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2D-LCoLBP: A Learning Two-Dimensional
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Abstract— The rotation, scale and translation invariance of
extracted features have a high significance in image recognition.
Local binary pattern (LBP) and LBP-based descriptors have been
widely used in image recognition due to feature discrimination
and computational efficiency. However, most of the existing
LBP-based descriptors have been designed to achieve rotation
invariance while fail to achieve scale invariance. Moreover,
it is usually difficult to achieve a good trade-off between
the feature discrimination and the feature dimension. In this
work, a learning 2D co-occurrence LBP termed 2D-LCoLBP
is proposed to address these issues. Firstly, a weighted joint
histogram is constructed in different neighborhoods and scales
of an image to represent the multi-neighborhood and multi-scale
LBP (2D-MLBP) and achieve the rotation invariance. A feature
learning strategy is then designed to learn the compact and robust
descriptor (2D-LCoLBP) from LBP pattern pairs across different
scales in the extracted 2D-MLBP to characterize the most stable
local structures and achieve the scale invariance, as well as
decrease the feature dimension and improve the noise robustness.
Finally, a linear SVM classifier is employed for recognition.
We applied the proposed 2D-LCoLBP on four image recognition
tasks—texture, object, face and food recognition with ten image
databases. Experimental results show that 2D-LCoLBP has obvi-
ously low feature dimension but outperforms the state-of-the-art
LBP-based descriptors in terms of recognition accuracy under
noise-free, Gaussian noise and JPEG compression conditions.

Index Terms— Image recognition, co-occurrence LBP, two-
dimensional, multi-scale space, feature learning.

I. INTRODUCTION

FEATURE extraction is a fundamental issue in computer
vision, e.g., face recognition [1]–[5], object detection [6],

and texture classification [2], [7]–[16]. The discrimination of
extracted features directly determines the final performance of
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real-world applications suffered from large intra-class varia-
tions. According to different feature extraction methods, image
features can be categorized into global features [17], [18] and
local features [7], [19], [20]. Global features describe holis-
tic representations of images from color, texture, and shape
visual cues. The representative ones include the co-occurrence
matrix method [17], the filtering-based method [18] and so
on. Local features are extracted from regions of interest,
which characterizes local corner, edge, and line structures.
Compared with global features, local features are more robust
to image transformations such as scale, occlusion, and uneven
illumination changes. Local features mainly include SIFT [19],
LBP [7], SURF [20] and so on. Among those local features,
LBP has aroused extensive attention due to its discrimination
and computational efficiency.

LBP was proposed by Ojala et al. [7] and is a non-
parametric local descriptor that encodes the differences
between a central pixel and a rectangular neighborhood of
3 × 3 pixels. Thus, a texture image can be characterized
by a probability distribution of 28 LBP patterns. In [15],
Ojala et al. used a circular neighborhood (i.e., 8r neighboring
pixels evenly distributed on a circle of radius r ) instead of a
rectangular neighborhood to calculate LBP patterns and further
proposed the rotation invariant LBP (LBPri ), the uniform LBP
(LBPu2), and the rotation invariant uniform LBP (LBPriu2).
Since then, LBP has motivated a large family of LBP-based
descriptors, which can be broadly summarized into two cat-
egories: individual occurrence LBP [1]–[3], [8]–[13], [16],
[21]–[23] that encodes each pattern independently, and the
co-occurrence LBP [4], [14], [24]–[27] that utilizes the spatial
position relationship to extract strong correlations between
adjacent patterns.

To improve the discrimination of individual occurrence
LBP, some works have been focused on extracting discrim-
inative information of local regions as much as possible.
Guo et al. [8] proposed the completed LBP (CLBP) that com-
bines three complementary components (i.e., the sign and
magnitude of local differences as well as the central pixels)
with building a 3D histogram for texture representation. The
local n-ary pattern (LNP) was introduced by Wang et al. [9],
which explores the discrimination of patterns and formulates
the feature extraction process as an integer decomposition
problem. While enhancing the discrimination of features,
the robustness has also been taken into consideration by
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some researchers. Tan and Triggs [2] developed the local
ternary pattern (LTP), which quantifies local differences by
the ternary pattern. Due to the user-specified threshold, LTP is
more discrimination and less sensitive to noise. Liu et al. [10]
introduced the median robust extended LBP (MRELBP) to
capture both microstructure and macrostructure texture infor-
mation and enhance the noise robustness. Song et al. [11]
proposed the locally encoded transform feature histogram
(LETRIST), which establishes transform features with rotation
invariance based on Gaussian derivative filters. Song et al. [12]
combined the local grouped order pattern (LGOP) and the
non-local binary pattern (NLBP) via central pixel encoding
to construct discriminative histograms as the texture descrip-
tor (LGONBP). Recently, several learning-based descriptors
[3], [13], [16], [21]–[23] have been proposed for dimen-
sionality reduction. Liao et al. [13] presented the dominant
LBP (DLBP) to establish histograms by selecting the most
frequently occurring patterns. Guo et al. [16] proposed the
scale selective LBP (SSLBP) based on dominant LBP in
scale space to achieve scale invariance for texture classifi-
cation. Duan et al. [22] presented the rotation invariant local
binary descriptor (RI-LBD) by jointly learning orientations
for local patches and hash functions for feature projection.
They also proposed a context-aware local binary feature learn-
ing (CA-LBFL) [23] for face recognition. The compressive
binary pattern (CBP) [3] was designed by replacing the local
derivative filters with RF eigenfilters. Although the individ-
ual occurrence LBP can obtain high discriminative ability,
these features generally have a huge dimension. For example,
the feature dimension of SSLBP, RI-LBD and DLBP is up
to 2400, 6000 and 14150 respectively. Moreover, most of the
individual occurrence LBP cannot keep a stable performance
under image scale transformation.

Compared with individual occurrence LBP, co-occurrence
LBP captures the spatial contextual information between
LBP patterns and provides higher-order statistical informa-
tion. Therefore, co-occurrence LBP has higher discrimination
than individual occurrence LBP. Louis and Plataniotis [4]
proposed to use multiple instances of rotational LBP patterns
as features instead of histogram bins of LBP patterns, and
the multiple features called CoLBP are selected by using the
sequential forward selection algorithm. Nosaka et al. [24]
introduced the co-occurrence of adjacent LBP (CoALBP)
by taking auto-correlation matrices calculated from two con-
sidered LBP patterns. They further presented the rotation
invariant co-occurrence pattern of LBP (RIC-LBP) [25] by
incorporating the concept of rotation equivalence class into
CoALBP. Qi et al. [26] developed the pairwise rotation invari-
ant co-occurrence LBP (PRICoLBP), which uses a pair-
wise transform invariance principle. They also introduced
the multi-scale co-occurrence LBP (MCLBP) [27] by captur-
ing the correlations among different scales. Xiao et al. [14]
proposed the 2D local binary pattern (2DLBP) that consid-
ers the spatial contextual information between LBP patterns
called LBP pattern pairs to describe more subtle structures
and performed better than traditional methods. However,
the two-stages classifier proposed by 2DLBP requires rmax+1
SVM classifiers, where rmax denotes the number of a circular

neighborhood, and its classification process is very com-
plicated. According to the concept of co-occurrence LBP
[A,B]CO, its feature dimension is the product of the dimension
of feature A and the dimension of feature B, which leads to
a sharp increase in feature dimension. Accordingly, the high
dimension of co-occurrence LBP is an important issue that
needs to be considered during classification. Besides, the scale
invariance is also a common issue that was not achieved in
these methods.

In summary, discrimination, rotation invariance, scale
invariance, and feature dimension are the essential proper-
ties for an effective descriptor in image recognition. Both
existing individual occurrence LBP and co-occurrence LBP
have achieved higher recognition performance by increasing
the dimension of features, which brings much redundant
information in these features. In this paper, we can capture
image information from both local and global perspectives
by concatenating histograms of descriptors, which will also
be accompanied by an increase in feature dimensionality.
Although the above features can completely express image
information, the contribution of each pattern of the feature
is distinct. Thus, we can adopt a feature learning strategy
to preserve useful features. It can maintain or even improve
discrimination of descriptors while reducing the feature dimen-
sion. Next, scale invariance of the extracted features is also
not well considered in existing methods, especially in the
co-occurrence LBP. In fact, the characteristic scale varies
with the scale of the image. We can also adopt the feature
learning strategy to obtain stable scale information, which can
be achieved through finding the characteristic scale of local
structures of the image.

Based on the aforementioned analyses, this paper proposes
a learning 2D co-occurrence LBP (2D-LCoLBP) for image
recognition. The major contributions of this paper can be
summarized as follows:

• The proposed 2D-LCoLBP considers the description of
images in multi-scale space and multi-neighborhood to
achieve the scale invariance and enhance the feature
discrimination.

• The proposed 2D-LCoLBP utilizes a simple and efficient
feature learning strategy on the co-occurrence LBP to
obtain the stable local structures for decreasing fea-
ture dimension, which makes a well-balanced trade-off
between the discriminative ability and feature dimension.

• The proposed 2D-LCoLBP has the complementarity of
individual occurrence LBP and co-occurrence LBP, and
it owns the robustness of individual occurrence LBP and
the discriminative ability of co-occurrence LBP.

This paper is organized as follows. The 2DLBP is firstly
briefly reviewed in Section II. In Section III, we described
the definition of 2D-LCoLBP. In Section IV, we validated
the effectiveness of the proposed 2D-LCoLBP and compared
it with the state-of-the-art LBP-based descriptors. Section V
concludes this paper.

II. BRIEF REVIEW OF 2DLBP

Co-occurrence LBP has a larger receptive field than indi-
vidual occurrence LBP and hence can depict more subtle
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Fig. 1. The framework of the proposed image recognition method.

and complex structures of images, which is more suitable
for practical image recognition applications. 2DLBP [14] is a
co-occurrence LBP. It is designed for gray-scale texture images
and considers the spatial contextual information between LBP
patterns to describe more refined and complex structures of
images. To obtain 2DLBP with rotation invariance, the rotation
invariant uniform LBP (LBPriu2) with 8r+2 patterns is chosen
to extract LBP feature maps:

LBPriu2
r (vc) =

⎧⎪⎨
⎪⎩

8r−1∑
n=0

Q(vn−vc), if U(LBPr (vc)) ≤ 2

8r+1, otherwise,
(1)

where vc is gray value of the central pixel, vn is gray value
of neighboring pixel that is evenly distributed on a circle of
radius r . Q(·) is the sign function, which is defined as

Q(x) =
{

1, x ≥ 0

0, x < 0.
(2)

U(·) counts bit-wise transitions from “0” to “1” or vice
versa, which can be formulated as

U(LBPr (vc)) = |Q(v8r−1 − vc) − Q(v0 − vc)|

+
8r−1∑
n=1

|Q(vn − vc) − Q(vn−1 − vc)|. (3)

For a given image I with size M×N , firstly, the LBP pattern
pair is defined to extract the spatial contextual information of
LBP feature map:

PC O(t,�t) = (LBPriu2
r (vt ), LBPriu2

r (vt+�t )), (4)

where PC O(t,�t)∈ {(0, 0) , . . . , (8r+1, 8r+1)}, t= (x, y)
denotes the coordinates of pixel in the image I with
x∈ [r+1, M−r ] and y∈ [r+1, N−r ]. �t=(�x,�y) repre-
sents the spatial position relationship between the LBP pat-
terns in the local area a×a, with �x∈ (−a/2, a/2) and
�y∈ (−a/2, a/2). Then, PC O is globally counted in the LBP
feature map:

2DLBPI
r (P1, P2) =

∑
(x,y)∈I

f (PC O , P), (5)

with P= (P1, P2) ∈ {0≤P1≤ (8r+1) , 0≤P2≤ (8r+1)}, and
f (·) is defined as

f (PC O , P)=
{

1, if LBPriu2
r (vt )=P1, LBPriu2

r (vt+�t )=P2

0, otherwise.

(6)

On this basis, 2DLBPI
r can be reshaped as a feature vector

R
1×(8r+2)2

for representing the image. However, for improving
the discriminative ability of 2DLBP, as same as the previous
researches [4], [8], [10], [12], [14]–[16], 2DLBP also adopts
the multi-neighborhood strategy by concatenating histograms
of 2DLBP with different circular neighborhoods (r=1, 2, 3):

2DLBPI = [2DLBPI
1, 2DLBPI

2, 2DLBPI
3], (7)

where [,] denotes concatenate operation along the neigh-
borhood direction. Therefore, the dimension of 2DLBP is
1×(102+182+262) = 1×1100 for the image I .

III. THE PROPOSED 2D-LCOLBP

The multi-neighborhood 2DLBP not only captures informa-
tion from different circular neighborhoods but also extracts
the spatial contextual information between LBP patterns.
However, 2DLBP is sensitive to image scale transformation.
Moreover, it is usually difficult to get a good trade-off
between the feature discrimination and feature dimension. For
addressing the above issues, a learning 2D co-occurrence LBP
(2D-LCoLBP) is proposed. The framework of an image recog-
nition method based on the 2D-LCoLBP is shown in Fig. 1,
and it mainly contains three stages. Firstly, a weighted joint
histogram is constructed in different neighborhoods and scales
of an input image to represent the multi-neighborhood and
multi-scale LBP (2D-MLBP). Then, a feature learning strat-
egy is designed on 2D-MLBP to obtain the scale-invariant,
compact and robust descriptor (2D-LCoLBP). Finally, a linear
SVM classifier is employed for final image recognition.

A. The Multi-Neighborhood and Multi-Scale
LBP (2D-MLBP)

The multi-neighborhood strategy combines the responses
of multiple descriptors with different radius, which improves
the discriminative ability from the local perspective. From the
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Fig. 2. Illustration of multi-scale analysis on KTH-TIPS. (a1)-(a3) are
histograms of 2DLBP. (b1) is absolute differences of histograms between
(a1) and (a2). (b2) is absolute differences of histograms between (a2) and
(a3). (b3) is absolute differences of histograms between (a1) and (a3).

global perspective, image scaling resizes an image to simulate
the change of the distance between observer and object.
Witkin [28] and Koenderink [29] proposed the scale-space
theory to represent image structures at different scales. The
main intention is to separate image structures from the original
image, such that the fine-scale image structures that exist at
the finest scale can be obtained to represent the image. In this
paper, a multi-scale space defined in Eq. (8) is constructed by
convoluting an image with the Gaussian kernel function G(·).
Note that new structures are not created in the image scale
transformation defined in Eq. (8) from a finer to a coarser
scale.

li (x, y) =
{

I (x, y), i = 1

G(x, y; σ) ∗ li−1(x, y), 1 < i≤S,
(8)

where li is the i -th scaled image of an image I in the
multi-scale space, S represents the total number of scaled
images, and “∗” is the convolution operation. G(·) represents
the Gaussian kernel function with the standard deviation σ ,
which is defined as

G(x, y; σ) = 1

2πσ 2 exp(− x2 + y2

2σ 2 ). (9)

In the multi-scale space, we encoded 2DLBP at three
scales. 2DLBP histograms under different scales are shown
in Fig. 2 (a1)-(a3). “scale1” represents the original images,
“scale2” represents scaled images with σ=1, and “scale3”
represents scaled images with σ=4. From Fig. 2 (a1)-(a3),
we observed that the parts with high frequency in 2DLBP
histograms at different scales are distinctly different. The
2DLBP histogram of “scale1” emphasizes the pattern pairs
on both sides, the histogram of “scale2” is relatively uniform,
and the histogram of “scale3” highlights the pattern pairs
in the middle area. The absolute differences of histograms
between the scaled images with different σ are shown in
Fig. 2 (b1)-(b3), they become more obvious as the difference
of σ increase. Theoretically, more information is reflected in
the most frequently occurring LBP pattern pairs. Thus, 2DLBP
histograms at different scales can describe different represen-
tations of the image. We can utilize the complementarity of
these pattern pairs to capture more detailed and stable texture
information.

Inspired by the above observation, this paper combines
multi-scale representations of the original image. On this basis,
for encoding the difference information between LBP pattern
pairs further, we designed a weight matrix that weights the
histograms of 2DLBP in multi-scale space for generating a
weighted joint histogram. This weighted joint histogram is
denoted as 2D-MLBP in this paper. Fig. 3 illustrates the frame-
work of the proposed 2D-MLBP. For a given image I with size
M×N , a multi-scale space (l1, l2, . . . , lS) is firstly derived
by Eq. (8), aiming to obtain global representations of an
image by convoluting it with Gaussian kernel function while
keeping the image size unchanged. Then, the rotation-invariant
LBPriu2 defined in Eq. (1) is applied to extract LBP fea-
ture maps of image at different scales respectively. Thirdly,
the multi-neighborhood 2DLBP defined in Eq. (7) is used
to extract the contextual information of LBP feature maps in
multi-scale space (l1, l2, . . . , lS ):

H 2D = [2DLBPl1 ; . . . ; 2DLBPli ; . . . ; 2DLBPlS ], (10)

where [;] denotes concatenate operation along the scale direc-
tion, 1≤i≤S, and H 2D∈R

S×1100. Finally, for acquiring the
weighted frequency of pattern pairs in H 2D, the weighted joint
histogram 2D-MLBP can be obtained as

2D-MLBP = W ◦ H 2D, (11)

where “◦” is the Hadamard product, the weight matrix W
is composed of weight matrix Wr with different radius
(r=1, 2, 3), and Wr is defined as

Wr (P1, P2) =
{

1, if P1 = P2

|P1 − P2|λ, otherwi se.
(12)

On this basis, Wr is reshaped from R
(8r+2)×(8r+2)

to R
1×(8r+2)2

, and W = [W1, W2, W3]∈R
1×1100. Note that

W is broadcasted along the scale direction to R
S×1100.

So, the dimension of 2D-MLBP is S×1100. From Eq. (12),
we can find that pattern pairs with the same difference have
the same weight value. Moreover, the weight matrix Wr can be
controlled using the weight coefficient λ under the following
conditions:

• When λ=0 and Wr (P1, P2) =1, only the occurring num-
ber of LBP pattern pairs is counted, which is the same
as existing co-occurrence LBP.

• When λ>0 and Wr (P1, P2)≥1, the value of Wr (P1, P2)
increases with the difference between P1 and P2
increases. This situation not only counts the occurring
number of pattern pairs but also highlights difference
information between pattern pairs.

• When λ<0 and 0<Wr (P1, P2)≤1, the value of
Wr (P1, P2) decreases as the difference between P1 and
P2 increases, which is utilized to weaken the influence of
difference information.

The value of λ is universal, and it applies to all
co-occurrence LBP. The experimental analysis on the setting
of parameter λ will be discussed in details in subsection IV-B.

To further verify the improvement of multi-neighborhood
strategy and multi-scale space performed on the 2D-MLBP,
we analyzed the recognition accuracy of 2D-MLBP with
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Fig. 3. Illustration of the proposed 2D-MLBP.

Fig. 4. The CC Ps of 2D-MLBP with different neighborhoods and
scales on nine databases. The x-axis denotes the abbreviation of data-
bases, i.e., KTH-TIPS(K), Brodatz(B), FMD(F), CUReT(C), UMD(U),
Coil-100(C1), corel1k(c), AR Face(A), Extended Yale B(E).

different neighborhoods (r=1 and r∈ [1, 2, 3]) and different
scales (S=1 and S=4) on nine image databases. As shown
in Fig. 4, the CC Ps of 2D-MLBP with r∈ [1, 2, 3] and
S=1 (i.e., multi-neighborhood and original image) is sig-
nificantly better than that with r=1 and S=1 (i.e., single
neighborhood and original image), which demonstrates the
effective of multi-neighborhood strategy. Moreover, the CC Ps
of 2D-MLBP with r=1 and S=4 (i.e., single neighborhood
and the multi-scale space) is also better than that with r=1 and
S=1, which proves that the multi-scale space is effective.
It can also be seen that the CC Ps of 2D-MLBP with
r∈ [1, 2, 3] and S=4 (i.e., multi-neighborhood and multi-scale
space) has the highest recognition accuracy. These results
show that the combination of multi-neighborhood strategy and
multi-scale space can capture more stable texture information
and further promote the recognition performance of 2D-MLBP.

B. A Learning 2D Co-Occurrence LBP (2D-LCoLBP)

For LBP-based descriptors, almost all methods improve
the discriminative ability and robustness of descriptors by
concatenating histograms of descriptors. We also adopted this
idea in 2D-MLBP. However, this way will cause an increase in
feature dimension. Meanwhile, are all pattern pairs the same
roles when an image is scaled or rotated? And are all pattern
pairs useful for representing an image? After exploring these

Fig. 5. Illustration of a feature learning strategy.

two doubts, we proposed a feature learning strategy as shown
in Fig. 5, which contains two stages: feature pre-learning and
feature selection. This strategy aims to learn the compact
and robust descriptor (2D-LCoLBP) across different scales
in 2D-MLBP and characterize the most stable local structures
by 2D-LCoLBP for achieving the scale invariance, a smaller
feature dimension and the robustness to noise.

For the first doubt mentioned above, Mikolajczyk [30]
demonstrated that the scale selection technique based on the
extrema of a scale space representation is the most reliable
method for determining the characteristic scale of a local
structure because the descriptor computed at this scale conveys
more information comparing to descriptors at other scales.
Thus, we can choose the extrema with more robustness
against image scale, noise and illumination transformations,
which can be accomplished by searching for stable features
across all possible scales. Inspired by this idea, in the feature
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Fig. 6. Proportion of the first η% LBP pattern pairs among all LBP pattern
pairs of images on nine image databases, i.e., KTH-TIPS(K), Brodatz(B),
FMD(F), CUReT(C), UMD(U), Coil-100(C1), corel1k(c), AR Face(A),
Extended Yale B(E).

pre-learning stage, for 2D-MLBP of an image I∈T (T is a
learning set), a cross-scale co-occurrence LBP (2D-CoLBP)
can be computed as

2D-CoLBP(b) = max(2D-MLBP(1, b), . . . , 2D-MLBP(i, b),

. . . , 2D-MLBP(S, b)), (13)

where 1≤b≤1100. In this way, the stable LBP pattern pairs
of image I∈T across all scales are kept.

For the second doubt, as pointed out by [13], [15], occurring
frequencies of different patterns vary greatly, and some of
the patterns rarely occur in an image. The proportion of
these patterns are too small and inadequate to provide a
reliable estimation for occurring possibilities of these patterns.
To discuss whether LBP pattern pairs with tiny proportions
are negligible, we calculated the proportion of pattern pairs
occupied by different η% of most frequently occurring pattern
pairs in the stable features. As illustrated in Fig. 6, the pro-
portion increases with η increases on nine image databases,
which reaches 0.85-0.95 at η = 40, indicating that this part is
a preponderance of the overall pattern pairs.

Based on this analysis, in the feature pre-learning stage,
after generating 2D-CoLBP of each image in a learning
set, a global cross-scale co-occurrence LBP (2D-CoLBPG) is
counted by accumulating the 2D-CoLBP of each image in this
learning set, which can be defined as

2D-CoLBP(b) =
∑

2D-CoLBP(b). (14)

2D-CoLBPG is sorted in descending order. The first η% LBP
pattern pairs in sorted 2D-CoLBPG are retained as pattern
labels P LT [1, 2, . . . , η%×1100] that contain a majority of
image information.

In the feature selection stage, for 2D-MLBP of an image E ,
we firstly extract 2D-CoLBP that is learned across different
scales in 2D-MLBP using Eq. (13). Then, the pattern labels
P LT established in the feature pre-learning stage are per-
formed on 2D-CoLBP for selecting the pattern pairs to obtain
the learning 2D co-occurrence LBP (2D-LCoLBP) with scale
invariance and relatively low feature dimension. The feature
dimension is reduced from S×1100 to 1×(η%×1100).

We then discussed the recognition performance of
2D-MLBP, 2D-CoLBP, and 2D-LCoLBP on nine image
databases. The feature dimensions of 2D-MLBP, 2D-CoLBP,
and 2D-LCoLBP are 4400, 1100, and 440, separately.
As illustrated in Fig. 7, 2D-CoLBP maintains the recognition

Fig. 7. The CC P S of 2D-MLBP, 2D-CoLBP, and 2D-LCoLBP on
nine image badabases. The x-axis denotes the abbreviation of data-
bases, i.e., KTH-TIPS(K), Brodatz(B), FMD(F), CUReT(C), UMD(U),
Coil-100(C1), corel1k(c), AR Face(A), Extended Yale B(E).

accuracy comparable to that of 2D-MLBP while greatly reduc-
ing the feature dimension. Moreover, 2D-LCoLBP with the
lowest feature dimension has the highest recognition accuracy
on seven of nine databases. Thus, each step of the feature
learning strategy is effective. The discriminative ability of
these descriptors is maintained or even enhanced while remov-
ing redundant information.

C. The Scale Invariance of 2D-LCoLBP

In this subsection, KTH-TIPS [31] with an available
ground-truth of scales is used to illustrate that the proposed
2D-LCoLBP has scale invariance. KTH-TIPS exhibits texture
images from ten different materials captured at nine different
scales with nine samples per material. We divided KTH-TIPS
into nine subsets (i.e., s1-s9) according to image scale para-
meters, so each subset includes 90 (10 × 9) images. In this
experiment, we compared 2D-LCoLBP with LBPriu2 [15],
SSLBP [16], MCLBP [27], and 2DLBP [14]. For 2D-LCoLBP,
the first 54, 440, 886, and 1100 LBP pattern pairs are selected
to maintain consistency with the number of bins in histograms
of LBPriu2, SSLBP, MCLBP, and 2DLBP, separately. Then,
we used the Euclidean distance Dist to quantify the similarity
of histograms.

Dist (H1, H2) =
√∑

k∈K

(H1(k) − H2(k))2, (15)

where H1 and H2 are histograms, H1(k) and H2(k)(1≤k≤K )
are the k-th bin of them respectively and K denotes the total
number of bins in the histogram.

Fig. 8 illustrates the Dist of different methods. From Fig. 8,
we observed that for all methods, their Dist increase as
the gap of image scale between two subsets increases. The
Dist of 2D-LCoLBP is much smaller than LBP, SSLBP,
MCLBP, and 2DLBP. In addition, to show the scale invariance
of the proposed 2D-LCoLBP more intuitively, the results
of two images are given in Fig. 9. Absolute differences of
histograms between Fig. 9 (a) and (b) of different methods
are shown in Fig. 9 (c3), (d3), (e3), and (f3). We found that
the absolute differences of 2D-LCoLBP histograms are much
smaller than that of these methods. These results indicate
that 2D-LCoLBP with scale invariance is more stable than
LBPriu2, SSLBP, MCLBP, and 2DLBP under image scale
transformation.
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Fig. 8. The Dist of different methods on the nine subsets of KTH-TIPS.
(a) is the Dist of LBPriu2 and 2D-LCoLBP. (b) is the Dist of SSLBP and
2D-LCoLBP. (c) is the Dist of MCLBP and 2D-LCoLBP. (d) is the Dist
of 2DLBP and 2D-LCoLBP.

Fig. 9. The scale invariance of the proposed 2D-LCoLBP. (a) and (b) display
two images of “aluminium_foil” class from KTH-TIPS with different image
scale parameters. (c1)(c2), (d1)(d2), (e1)(e2), and (f1)(f2) are the histograms
of different methods on these two images. (c3), (d3), (e3), and (f3) are absolute
differences of histograms.

IV. EXPERIMENTAL RESULTS AND ANALYSES

To validate the effectiveness of 2D-LCoLBP, we carried out
five groups of experiments in this section. In subsection IV-A,

TABLE I

THE BASIC INFORMATION OF TEN DATABASES

the image databases and experimental setup are introduced.
In subsection IV-B, parameter settings of 2D-LCoLBP are
discussed. In subsection IV-C, we analyzed the effectiveness
of 2D-LCoLBP. In subsection IV-D, the geometric invariance
of 2D-LCoLBP is verified. At last, we compared 2D-LCoLBP
with the state-of-the-art LBP-based methods in terms of
texture classification, object, face and food recognition in
subsection IV-E and IV-F respectively.

A. Databases and Experimental Setup

1) Databases: There are ten databases employed for eval-
uation, which can be divided into four categories—texture,
object, face and food databases. Five texture databases include
KTH-TIPS [31], Brodatz [32], FMD [33], CUReT [34],
and UMD [35]. Two object databases include Coil-100
[6] and corel1k [36]. Two face databases include AR Face [37]
and Extended Yale B [38]. The food database is Raw-
FooT [39]. For clarity, we summarized the basic information
of ten databases in Table I.

KTH-TIPS is an image database containing ten kinds of
materials, and each material was captured by nine different
scales, three different poses, and three different illumina-
tions. FMD contains ten classes, including fabric, foliage,
glass, etc. Each image in FMD is associated with a binary
human-labeled mask, describing the location of an object.
We only extracted the features within the masked regions.
For CUReT, we utilized the same subset of images as [40],
which contains 61 classes with 92 images in each class.
These images were captured under different illuminations and
viewpoint directions. AR Face contains 126 individuals and
over 4000 frontal images. We used images of 100 subjects (i.e.,
50 males and 50 females). For Extended Yale B, we adopted
the same subset of images as [5], which contains a total
of 38 subjects with severe illumination variations. All the
frontal face images have already been manually aligned and
cropped to 168 × 192. In our experiments, each image of face
databases was divided into four blocks with the same size.
The size of each block in AR Face is 60 × 82, and that in
Extended Yale B is 84 × 96. Note that the feature dimension
of the partitioned face database is four times higher than that
of the original face database. RawFooT consists of 68 texture
classes of raw food, with each class having 46 images acquired
under 46 lighting conditions.
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TABLE II

IMAGE DATABASES USED IN THE EXPERIMENTAL SECTION

In the experimental section, to analysis the discriminative
ability, rotation invariance, scale invariance, and robustness
under Gaussian noise and JPEG compression conditions of
the proposed 2D-LCoLBP, we conducted the corresponding
operations on the above databases as shown in Table II. The
details are described as follows:

• Image rotation transformation: We first resized each
image to 1.5 times of its original size through bicubic
interpolation. Then, we rotated the image with a random
angle deg∈[0◦, 360◦), and followed by cropping to the
same size as the original image from the center of
the rotated image. This step guarantees that no black
space is cropped out. Note that the rotating and cropping
operations may lead to information loss.

• Image scale transformation: We resized each image to a
random β time of its original size through bicubic inter-
polation with β varying from 0.6 to 3.0 with a step size
of 0.2. The resizing operation is used to simulate different
scales of the image, but it may lead to information loss.

• Gaussian noise: Gaussian noise is added to each image
with the mean value of 0, and the variance var varies
from 0.02 to 0.1 with a step size of 0.02.

• JPEG compression: each image was recompressed in
JPEG format with quality factors (QF) varying from
90 to 30 with a decrement of 20.

We did not utilize face databases under image transfor-
mations, mainly because the resizing, rotating, and cropping
operations in the process of making database cannot guarantee
the integrity of face, resulting in serious loss of image content.
We only added Gaussian noise and JPEG compression attacks
on texture databases. Because texture images have inter-class
ambiguities and large intra-class variations. After adding the
above attacks, the difficulty of recognition task will be greatly
increased.

2) Evaluation Metrics: For evaluating the recognition accu-
racy of different methods, the correct classification percentages
CC Ps is defined as

CC Ps= the number of correctly classified images

the total number of classified images
× 100%.

(16)

We randomly chose a half of images per class for training
and the remaining images for testing. This split was imple-
mented for 10 times randomly, and the average CC Ps over
the 10 splits was used as the final evaluation result.

TABLE III

IMPLEMENTATION DETAILS OF THE PROPOSED 2D-LCoLBP
AND THE STATE-OF-THE-ART METHODS

3) Implementation Details: The relevant parameters
of 2D-LCoLBP is illustrated in Table III. We randomly
selected 25% images per class as a learning set T for
feature learning. For classification, we used the publicly
available LibSVM library [41]. We compared 2D-LCoLBP
that is a learning-based co-occurrence LBP with 10 state-
of-the-art LBP-based methods which can be divided into
three categories: non-learning individual occurrence LBP
(LBPriu2 (2002, [15]), MRELBP (2016, [10]), LETRIST
(2018, [11]), and LGONBP (2020, [12])), learning-based
individual occurrence LBP (CBFD (2015, [21]), SSLBP
(2016, [16]), and CA-LBFL (2018, [23])), and non-learning
co-occurrence LBP (CoALBP (2011, [24]), MCLBP (2015,
[27]), and 2DLBP (2019, [14])). The corresponding authors
provide the source codes of the comparative LBP-based
methods, and the default parameters and classifiers provided
by the authors are adopted to keep consistency with the
results given in the original papers. The specific experimental
parameters are also shown in Table III. All methods are
implemented on a PC with a 2.40 GHz CPU.

B. Parameter Evaluation of the Proposed 2D-LCoLBP
The proposed 2D-LCoLBP involves four main parameters

that need to be evaluated, i.e., S in Eq. (8), σ and w in
Eq. (9), a in Eq. (4), as well as λ in Eq. (12). The suitable
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Fig. 10. Parameter evaluation of the proposed 2D-LCoLBP on nine image databases. (a1) and (a2) show the CC Ps of 2D-LCoLBP with S. (b1) and (b2)
show the T ime of 2D-LCoLBP with S. (c1) and (c2) show the CC Ps of 2D-LCoLBP with schemes. (d1) and (d2) show the CC Ps of 2D-LCoLBP with
a×a. (e1) and (e2) show the T ime of 2D-LCoLBP with a×a. (f1) and (f2) show the CC Ps of 2D-LCoLBP with λ.

parameters setting can make 2D-LCoLBP to be applicable
for general image recognition applications. In this subsection,
we evaluated these specific parameters on nine databases by
fixing others as default values.

1) Evaluation of Multi-Scale Space S: Fig. 10 (a1) and
(a2) illustrate the CC Ps of 2D-LCoLBP with S varying
from 2 to 10 with step 1 on nine databases. From these
figures, We observed that the CC Ps of 2D-LCoLBP on
most databases firstly increases as S increases, then reaches a
peak at S=4, and finally tends to stable gradually. As the
number of scale S increases, the detailed information of
the image gradually decreases after Gaussian filtering, and
its computational complexity also increases significantly.
Fig. 10 (b1) and (b2) show the average running time (T ime:
minute) of feature extraction process on each image by
2D-LCoLBP with different S. As shown in these figures,
the T ime of 2D-LCoLBP increases as S increases. For
KTH-TIPS, the T ime of 2D-LCoLBP with S=6 is 1.72 times
of that with S=4. Therefore, choosing S=4 can effectively
balance the relationship between recognition accuracy and
computational efficiency.

2) Evaluation of the Standard Deviation σ and Window
Size w×w: The degree of image smoothing depends on
the σ and w×w. Increasing σ can enhance the influence
of surrounding pixels on the central pixel and make images
smoother, and vice versa. The value of w is often related to
the value of σ . Fig. 10 (c1) and (c2) show the results of the
proposed 2D-LCoLBP using five schemes (σ,w): G1=(2−1/8,
3), G2=(20, 5), G3=(21/8, 7), G4=(21/4, 9), and G5=(21/2,
11). From these figures, we found that G4 can get a suitable
smoothing effect and obtains the best recognition accuracy
compared with G1, G2, G3 and G5.

3) Evaluation of the Local Area a×a: Fig. 10 (d1) and
(d2) show that the CC Ps of the proposed 2D-LCoLBP with
different a×a. For KTH-TIPS, Brodatz, FMD, and corel1k,
2D-LCoLBP achieves the highest CC Ps when a=3, while
the value of a has little effect on CUReT, UMD, Coil-100,
AR Face and Extended Yale B. Theoretically, the larger the
local area a×a, the more contextual information of PC O

is involved in the proposed 2D-LCoLBP. However, the cor-
relation of PC O decreases with the increase of a, which
causes the CC Ps to decline or remain unchanged. In addition,
Fig. 10 (e1) and (e2) show the T ime of 2D-LCoLBP with
different a×a. From these figures, the T ime of 2D-LCoLBP
increases with a increases. Therefore, the size of a×a is set
to 3 × 3 by considering the balance between the recognition
accuracy and computational efficiency.

4) Evaluation of the Weight Coefficient λ: As discussed in
subsection III-A, the value of λ is universal. To determine
the optimal weight coefficient, the value of λ is varied from
−2 to 2, with an increment of 0.5. Fig. 10 (f1) and (f2)
show the CC Ps of the proposed 2D-LCoLBP with different
λ. As illustrated in Fig. 10 (f1) and (f2), with the increase
of λ, the CC Ps increases and subsequently decreases. For all
databases, the CC Ps of λ∈[−2, 0] is generally lower than
that of λ∈[0, 1]. It can further illustrate that 2D-LCoLBP
not only counts the occurring number of pattern pairs but
also highlights difference information between pattern pairs.
Therefore, the weight coefficient λ is suggested as 0.5 in the
following experiments.

C. The Effectiveness Analysis of the Proposed 2D-LCoLBP

In this experiment, we discussed the effect of different η%
on the recognition performance of 2D-LCoLBP to demonstrate
the effectiveness of a feature learning strategy. As shown
in Fig. 11, the value of η varies from 10 to 100 with an
increment of 10. From this figure, it can be found that, when
η is up to 40, increasing the value of η does not improve
the CC Ps of 2D-LCoLBP on all image databases. Therefore,
the feature learning strategy can balance the relationship
between the discriminative ability and feature dimension, and
remove redundant information.

D. Geometric Invariance of the Proposed 2D-LCoLBP

In this subsection, we validated the rotation invariance and
scale invariance of the proposed 2D-LCoLBP. Experiments
are conducted on seven rotated databases and seven scaling
databases separately.
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TABLE IV

THE CC Ps OF THE PROPOSED 2D-LCoLBP AND THE STATE-OF-THE-ART METHODS ON SEVEN NEW ROTATED DATABASES

TABLE V

THE CC Ps OF THE PROPOSED 2D-LCoLBP AND THE STATE-OF-THE-ART METHODS ON SEVEN NEW SCALING DATABASES

Fig. 11. The CC Ps of the proposed 2D-LCoLBP with different η%.

1) Rotation Invariance: Because PC O is composed of two
LBPriu2, it is easy to deduce that 2D-LCoLBP has rotation
invariance. Table IV shows the experimental results by differ-
ent methods on seven rotated databases. It can be clearly seen
that the CC Ps of the proposed 2D-LCoLBP is significantly
higher than the state-of-the-art methods. Especially on rotated
Brodatz, the CC Ps of 2D-LCoLBP outperforms most recently
LETRIST method that has rotation invariance with 1.57%
improvement. These experimental results illustrate the rotation
invariance of 2D-LCoLBP.

2) Scale Invariance: In this experiment, we validated
the scale invariance of 2D-LCoLBP. Table V shows the

experimental results by different methods on seven scaling
databases. We observed that the CC Ps of 2D-LCoLBP is
significantly higher than other comparative methods. The
CC Ps of 2D-LCoLBP on scaling corel1k reaches 75.60%,
which outperforms MRELBP with 7.7%. The main reason is
that 2D-LCoLBP can capture scale information.

E. Texture Classification

For evaluating the performance of 2D-LCoLBP on five
texture databases, three experiments are carried out in this
subsection. The first experiment focuses on texture classi-
fication by 2D-LCoLBP, and compares it with 10 state-of-
the-art methods. In the second experiment, we compared
2D-LCoLBP with these methods for texture classification
under both noise-free and Gaussian noise conditions. In the
third experiment, we evaluated the robustness of 2D-LCoLBP
under JPEG compression condition.

1) Comparison With the State-of-the-Art Methods: Table VI
lists the CC Ps of 2D-LCoLBP and the state-of-the-art meth-
ods on five texture databases. We observed that 2D-LCoLBP
with relatively low feature dimension achieves the best results
on four of five databases, i.e., Brodatz, CUReT, UMD, and
FMD. On Brodatz, the CC Ps of 2D-LCoLBP outperforms
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Fig. 12. Comparison of classification performance by different methods under Gaussian noise and JPEG compression on five texture databases. (a1)-(a5)
KTH-TIPS, Brodatz, FMD, CUReT and UMD with different levels of Gaussian noise. (b1)-(b5) KTH-TIPS, Brodatz, FMD, CUReT and UMD with different
quality factors of JPEG compression.

TABLE VI

THE CC Ps OF THE PROPOSED 2D-LCoLBP AND THE STATE-OF-THE-ART
METHODS ON FIVE TEXTURE DATABASES

most recently LGONBP method with 4.97% improvement.
Moreover, the CC Ps of 2D-LCoLBP is 51.3% on FMD,
which is a significant improvement. The main reason is that
the texture images in FMD database are close to the real scene.
Thus, the classification performance of traditional methods
on this database is generally poor. 2D-LCoLBP outperforms
other comparative methods because its learning-based strategy
delivers powerful discriminative capability and achieves the
scale invariance.

2) The Noise Robustness: Fig. 12 (a1)-(a5) show the classi-
fication performance by the proposed 2D-LCoLBP and com-
parative methods under different levels of Gaussian noise on
five texture databases. It can be observed that the CC Ps of all
methods show a decreasing trend as the noise level increases.
The proposed 2D-LCoLBP is more robust to noise than that
of LBPriu2, MCLBP, and 2DLBP at all noise levels on five
texture databases. Moreover, for Brodatz, 2D-LCoLBP outper-
forms the state-of-the-art methods under different noise levels,
while LGONBP works much better than 2D-LCoLBP when
var≥0.02 for KTH-TIPS and CUReT. Besides, 2D-LCoLBP

and MRELBP perform competitively on FMD. The noise
robustness of MRELBP is mainly due to the use of the median
filter. These results show that 2D-LCoLBP can also perform
well in complex databases such as FMD with large intra-class
variations, despite the corruption of different noise levels.

3) The Robustness of JPEG Compression: Fig. 12 (b1)-(b5)
illustrates the classification performance of all comparative
methods under different QF on five texture databases. From
these figures, we found that the CC Ps of all methods
shows a decreasing trend as the QF decreases. The CC Ps
of 2D-LCoLBP can maintain the classification performance
even when QF is down to 30. For KTH-TIPS, Brodatz, FMD,
and UMD, there are significant performance gaps between
2D-LCoLBP and other comparative methods. Especially on
CUReT, 2D-LCoLBP and LETRIST perform competitively.
The main reason is that the smaller QF means the higher
degree of information loss, which leads to smaller differences
between the materials of each image in CUReT, such as light
reflections, shadows, and etc.

F. Evaluation on Object, Face and Food Recognition
In this subsection, we evaluated the image recognition

performance of the proposed 2D-LCoLBP in terms of object,
face and food recognition.

1) Object Recognition: In this experiment, two object data-
bases are employed for evaluation. The experimental results
are shown in Table VII. For Coil-100, the recognition perfor-
mance by 2D-LCoLBP is significantly better than that of other
methods, especially for LETRIST and LGONBP, which shows
26.41% and 31.36% improvements in CC Ps respectively. The
main reason is that both Coil-100 and corel1k have prominent
shape areas, showing that 2D-LCoLBP can capture the texture
information well and emphasize shape information.

2) Face Recognition: Table VII shows the experimental
results for face recognition by different methods on AR Face
and Extended Yale B. It can be clearly seen that for AR
Face, the CC Ps of 2D-LCoLBP is 0.77% higher than that of
CA-LBFL. The main reason is that this database has noticeable
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TABLE VII

THE CC Ps OF THE PROPOSED 2D-LCoLBP AND THE STATE-OF-THE-ART
METHODS ON OBJECT, FACE, AND FOOD DATABASES

illumination changes, and the face is partially occluded. These
results show that 2D-LCoLBP is not sensitive to the lack
of information in the occluded part of the face, and the
occluded part does not affect the overall distribution of features
in 2D-LCoLBP. Moreover, 2D-LCoLBP and CBFD perform
competitively on Extended Yale B that has heavy illumination
changes. Thus, 2D-LCoLBP has shown a desirable perfor-
mance in face recognition applications.

3) Food Recognition: In the previous subsections, we have
demonstrated the effectiveness of 2D-LCoLBP on classic
databases. To further prove that our method have more
practical applicability, we conducted the experiment on
RawFooT that is a relatively new database. The experimental
results are shown in Table VII. We observed the CC Ps
of 2D-LCoLBP is significantly higher than other comparative
methods.

V. CONCLUSION

In this paper, a learning 2D co-occurrence LBP named
2D-LCoLBP is proposed for image recognition. First of all,
the proposed 2D-LCoLBP considers the description of the
image in the multi-scale space and the contextual infor-
mation of LBP pattern pairs in the multi-neighborhood,
which achieves the scale invariance and enhances the feature
discrimination. Then, a feature learning strategy balances the
relationship between the feature discrimination and feature
dimension. The low-dimensional 2D-LCoLBP is obtained
across different scales in 2D-MLBP, which characterizes the
most stable local structures. Finally, experimental results
demonstrate an advanced performance of 2D-LCoLBP under
noise-free, Gaussian noise and JPEG compression condi-
tions. It can be verified in experimental results that the pro-
posed 2D-LCoLBP outperforms the state-of-the-art LBP-based
descriptors on four image recognition tasks, i.e., texture,
object, face and food recognition. Combining the proposed
method with a deep learning framework is the central issue in
our future work to derive an optimized descriptor with high
feature discrimination, robustness, and low-dimensionality.
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